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ABSTRACT. In this contribution to the theory of lattice rules for multidimen- 
sional numerical integration, we first establish bounds for various efficiency 
measures which lead to the conclusion that in the search for efficient lattice 
rules one should concentrate on lattice rules with large first invariant. Then we 
prove an existence theorem for efficient lattice rules of rank 2 with prescribed 
invariants, which extends an earlier result of the author for lattice rules of 
rank 1. 

1. INTRODUCTION 

For s > 2 an s-dimensional lattice is the set of all linear combinations 
with integer coefficients of s linearly independent vectors in Rs. We only 
consider lattices which contain Zs as a sublattice. If L is such a lattice, then 
L n [0, 1)s is a finite set consisting, say, of the distinct points xl, ... , XN. The 
s-dimensional lattice rule corresponding to L (or, by a slight abuse of language, 
the lattice rule L) approximates the integral I(f) of a function f over [O, I]5 
by 

Q(L; f) = Ekf(xn). 
n=1 

We write X(L) = L n [0, 1)s = {xl, ... , XN} for the set of nodes in the lattice 
rule L. If we want to emphasize that the number of nodes in a lattice rule is 
N, then we speak of an N-point lattice rule. To avoid a trivial case, we always 
assume that N > 2. 

Lattice rules were originally designed for the numerical integration of periodic 
functions having [0, 1]5 as their period interval, and they were introduced by 
Sloan [15] and Sloan and Kachoyan [16]. Later, the applicability of lattice 
rules was extended to nonperiodic integrands by Niederreiter and Sloan [14]. 
A special class of lattice rules has been known for a long time as the method 
of good lattice points, which goes back to Korobov [5] and Hlawka [3]. We 
refer to Lyness [9] for a recent survey of lattice rules and to Hua and Wang [4] 
and Niederreiter [1 1, 13] for expository accounts of the method .of good lattice 
points. 
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An important classification of lattice rules was established by Sloan and Ly- 
ness [1 8]. They showed that for any s-dimensional lattice rule L there exist a 
uniquely determined integer r (called the rank) with 1 < r < s and positive 
integers n1, ... , nr (called the invariants) with ni+ Ini for i = 1, ... , r - 1 
and nr > 1 such that the node set X(L) consists exactly of all fractional parts 

(1) {Z/I zi} with 1 < ki < ni for I < i < r. 

and with suitable z1, ... , Zr E Zs. Here the fractional part {t} of t = 
(ti,.. .,tt) E Rs is defined by 

{t} = ({ti}, I**, {ts}) E 1[, l)s, 

where {t} = t - LtJ for t E R. The points listed in (1) are all distinct, and so 
the number N of nodes satisfies N = n1 **. nr. The lattice rules that are used 
in the method of good lattice points are precisely the lattice rules of rank 1. 

In the present paper we will, first of all, present evidence that in the search 
for efficient lattice rules one should concentrate on lattice rules with large first 
invariant nI (see ?2). Then we will prove an existence theorem for lattice rules 
of rank 2 which shows what kind of efficiency one can expect if the invariants 
nI and n2 are prescribed (see ?3). This theorem can be viewed as an extension 
of the existence theorem for efficient lattice rules of rank 1 in Niederreiter [ 1 2]. 

To assess the efficiency of lattice rules, we use a standard procedure in nu- 
merical integration, namely to consider the order of magnitude of error bounds 
(for suitable classes of integrands) in terms of the number N of nodes. To de- 
scribe the most important error bounds, we introduce the following definitions 
and notations. 

Definition 1. The dual lattice L' of a lattice L is defined by 

L' = {h e RS: h . x E Z for all x e L}, 

where ha x denotes the standard inner product of h and x. 

For a lattice rule L we have L D Zs, and so it follows that L' C Zs. For 
h E Z we put r(h) = max(l, IhI), and for h = (hl, ...,hs) E Zs we put 
r(h) =Is I1 r(h1) . 

Definition 2. For any lattice rule L and for any real a > 1 define 

R,, (L) = E 1 
hEL'rha 

h#O 

Now suppose that the integrand f is periodic with period interval [0, 1]s 
and that f is represented by its absolutely convergent Fourier series with Fourier 
coefficients f(h) satisfying f(h) = O(r(h)-O) for some a > 1. Then Sloan 
and Kachoyan [ 1 7] have shown the error bound 

(2) Q(L; f) -I(f) =O(Ra(L)), 

where the implied constant depends only on f . Thus, an efficient lattice rule 
should have a small value of Ra(L). To get a criterion independent of a, we 
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introduce the quantity RI (L) . Put 

C(N) = {h E Z: - N/2 < h < N/2}, C*(N) = C(N)\101, 
Cs(N) = {(hl, ... , hs) E Zs: hi E C(N) for 1 < i < s}, 

Cs*(N) = Cs(N)\{O}. 

Definition 3. For any N-point lattice rule L let 

R1 (L) = A 1 
hEE(L) r(h) 

where E(L) = Cs* (N) n L' . 

Note that E(L) is nonempty by [14, Proposition 3]. We remark that in 
the definition of R1 (L) we cannot use the same range of summation as in the 
definition of R, (L), a > 1, since the resulting infinite series would diverge. 
The advantage of R1 (L) is that all quantities R,(L), a > 1, can be bounded 
in terms of RI (L) . In fact, in Theorem 1 we will show that R,(L) = O(R1 (L)&) 
for all a > 1 . Thus, a small value of R1 (L) guarantees small values of R,(L) 
for all a > 1 . 

Definition 4. The figure of merit p(L) of a lattice rule L is defined by 

p(L) = min r(h). 
hEL' 
h#O 

The quantities R,(L), a > 1, can be bounded in terms of the figure of 
merit p(L). For a = 1 we note first that we also have p(L) = minhEE(L) r(h) 
with E(L) as in Definition 3, according to [14, Proposition 1]. Hence, for any 
N-point lattice rule L we have 

(3) (L) < RI(L) = ? (lo )s ) (3) ~ ~ ~~p(L) -pL 

where the upper bound was shown in the proof of [ 14, Theorem 2]. For a > 1 
we have 

(4) < R,,, (L) = ((1 + logp(L))5I) 

where the upper bound was shown in the proof of [17, Theorem 4]. The im- 
plied constants in (3) and (4) depend only on a and s. An error bound for 
nonperiodic integrands is based on the following notion. 

Definition 5. The discrepancy D(L) of the node set X(L) of an N-point lattice 
rule L is defined by 

D(L) = sup card(X(L) n J) Vol(J) 
N 

where the supremum is extended over all half-open subintervals J of [0, 1)5 
of the form J = rfsJI [us, vi) and where Vol(J) denotes the volume of J. 

Now let the integrand f be of bounded variation on [0, 1 ]s in the sense of 
Hardy and Krause. Then we have 

(5) Q(L; f) -1I(f) = O(D(L)) 
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by the Koksma-Hlawka inequality (see [6, Chapter 2]), where the implied con- 
stant depends only on f. By combining Theorem 1 in [14] and inequality (4) 
in [14], we obtain 

(6) D(L) < s/N + IR1 (L) 

for any N-point lattice rule L. Therefore, a small value of RI (L) guarantees a 
small discrepancy D(L) and thus a small error bound in (5). The discrepancy 
D(L) can also be bounded in terms of the figure of merit p(L). According to 
results in [14] we have 

Cs <D(L)< cs'(log N)s 
p(L) D(L) - p(L) 

for any N-point lattice rule L, where the positive constants c5 and cs' depend 
only on s. 

In view of the results above, we see that an efficient lattice rule L can be 
characterized as having a small value of R1 (L) or a large value of p(L), and 
that these two characterizations are basically equivalent because of (3). For 
a detailed discussion of various ways of assessing the efficiency of integration 
rules such as lattice rules we refer to Lyness [8]. 

2. SOME SIMPLE BOUNDS 

We show first that the quantities R,(L), a > 1 , can be bounded in terms of 
R1 (L). Let C(a) = Eh0 h-a, a > 1 , be the Riemann zeta-function. 

Theorem 1. For any N-point lattice rule L and any a > 1 we have 

Ra(L) < (1 + 2C(a)N-)s - 1 + (1 + 24C(a))sRi(L) . 
Proof. By [17, Lemma 1] we have Nx E Zs for all x E L, hence L' contains 
NZs. We write 

(7) Ra(L) = A r(h)- + A r(h)- -: E1 + Z2E 
hENZs hEL' \NZs 

h5LO 

Now 

1 = Z r(h)- - 1 = I r(Nhl)- r(Nhs)- - 1 
hENZs hl,..., hseZ 

=(Ar (Nh ) - a) - I I + 2 A ( Nh)a ) -1 
heZ h=1 

= (1 + 2C(a)N-)s - 1. 

To bound Z2, we use that every h ? NZs can be uniquely represented in the 
form h = k + Nm with k E Cs* (N) and m E Zs. We have h E L' if and only 
if k E L' . Thus, the h E L' \NZs are exactly given by all points k + Nm with 
k E E(L) and m E Zs, where E(L) is as in Definition 3. Therefore, 

2 = Z Z r(k + Nm) -. 
mEZS kEE(L) 

We claim that 

(8) r(k + Nm) > r(k)r(m) for k E Cs(N), m e Zs. 
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It suffices to show 

r(k + Nm) > r(k)r(m) for k E C(N), m E Z. 

This inequality is trivial whenever km = 0. If km $A 0, then 

r(k + Nm) = k+ Nmj > NjmI - jk! > Njm! - N 

- 2(21ml - 1) > Ikf {ml = r(k)r(m). 

Thus (8) is proved. Using (8), we get 

:2 < E Z r(m)-ar(k)-a 
mEZ keel) 

MEzs keel) kEE(L) 

< (1 + 24(a))s (E r(k)1) = (1 + 24(a))sRi(L)a. 
kEE(L) 

In view of (7), this establishes the result. o 

We note that (1 + 24(a)N-a)s - 1 < c(s, a)N- with a constant c(s, a) 
depending only on s and a. Furthermore, we have R1(L) > p(L)-I > N-I, 
where the first inequality is obtained from (3) and the second inequality follows 
from the bound p(L) < N shown in [14, Proposition 2]. Hence, Theorem 1 
yields Ra(L) = O(R1 (L)a) with an implied constant depending only on s and 
a . 

We consider now lattice rules of arbitrary rank r and with invariants n, .I.. 
nr as described in ? 1. Note that n1 is the largest invariant. The following result 
is an improvement on the bound p(L) < N = ni ... *nr mentioned above. 

Proposition 1. We always have p(L) < nI. 
Proof. Since the invariants n2, ... , nr are divisors of n1, it follows from the 
description of the node set X(L) in (1) that the coordinates of all points of L 
are rationals with denominator n1 . Therefore L' contains niZs. In particu- 
lar, we have ho = (ni, 0, ..., 0) E L', hence p(L) < r(ho) = ni . O 

The argument in the proof of Proposition 1 also yields general lower bounds 
for the quantities Ra (L), a > 1. Here and later on, we use the expression 

(9) S(m) = Z IhK1 for integers m > I, 
hEC* (M) 

where for m = 1 we use the standard convention that an empty sum has the 
value 0. The following result is obtained from [12, Lemmas 1 and 2]. 

Lemma 1. For any m > 1 we have 

S(m) = 2logm + C+e(m) with e(m)1 <4/rm2, 

where C = 2y- log 4 = -0.23 ... with r being the Euler-Mascheroni constant. 
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Proposition 2. For any N-point lattice rule we have 

RO(L) > (1 + 2C(a)nT&)s - 1 for a > 1, 

RI (L) > (1 +- (-) ) -n 1 

Proof. We have shown in the proof of Proposition 1 that L' D nIZs. Thus 
for a > 1, 

Rc(L) > A r(h)- = A r(h)e - 1 = (1 + 2C(a)nT&)s - 1, 
hEnlZs hEniZs 

h5LO 

where the last identity is shown like the formula for 1 in the proof of Theorem 
1. For a = 1 we note that E(L) D Cs*(N) n (nIZs) and that the elements of 
the latter set are exactly all points nIh with h E Cs* (N/n) . Therefore, 

RI(L) > E r(nIh)- = E r(nIh)1 - 1 
hE Cs (N/n 1) hECs(N/n1) 

=(hE /fllr(nih)- - 1 = (I + (nIh) ) - I 
he C(Nlnl ) ,he C*(Nlnl ) 

= (1 +-S (-)-1 

It follows from Proposition 2 and Lemma 1 that if factors depending only on 
s and a are suppressed, then Rce(L) is at least of the order of magnitude n- 
for a > 1 and at least of the order of magnitude n-1 log(N/nl) for a = 1 . 
For the discrepancy D(L) we have the following general lower bound. 

Proposition 3. We always have D(L) > /nI. 
Proof. By the proof of Proposition 1, the coordinates of all points of X(L) 
are rationals with denominator ni. For 0 < e < nj let .J be the interval 
[e, n1i) x [0, 1)s-i . Then Je contains no point of X(L), and so 

D(L) L) Je) 
- Vol(Jg) = VOl(Jg) = 

- - C. 
N ni 

Letting e -* O+ we get the desired result. 5 

The bounds established in the propositions above basically carry the same 
information, but the consequences are displayed most clearly by Proposition 1. 
To assess the efficiency of a lattice rule, one has to relate the figure of merit 
p(L) to the number N = ni ... nr of nodes. For lattice rules of rank r > 2, 
Proposition 1 says that the "relative" figure of merit p(L)/N satisfies 

(I 0) ~~~p(L) 1 
(10) N - n2**n 
We want p(L)/N to be as large as possible for an efficient lattice rule, but (10) 
shows that this becomes more unlikely the larger the invariants n2, ... , nr. 
Indeed, (10) suggests that if we want to look for efficient lattice rules of rank 
> 2, then our best bet is to consider lattice rules with large first invariant ni . In 
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particular, we could consider lattice rules of rank 2 with small second invariant 
n2 . This is also supported by the results of the explicit search for efficient lattice 
rules carried out by Sloan and Walsh [20] which yielded lattice rules of precisely 
this type. 

We will now concentrate on lattice rules of rank 2. In ?3 we establish results 
which show the existence of lattice rules L of rank 2 for which the quanti- 
ties Ro, (L), a > 1, are small, and these results are the better the smaller the 
invariant n2- 

3. EXISTENCE THEOREMS FOR LATTICE RULES OF RANK 2 

We consider lattice rules which have a useful additional property, namely 
that of projection regularity. If L is an s-dimensional lattice rule with node 
set X(L), then for 1 < d < s we define Xd(L) to be the subset of [0, l)d 
obtained by retaining only the first d coordinates of each point of X(L) . Then 
L is called projection regular if card(Xd(L)) = n1 ... nd for 1 < d < r, where 
r is the rank and nI, ... , nr are the invariants of L. A characterization of 
projection-regular lattice rules was given by Sloan and Lyness [19]. 

For lattice rules of rank 1 a general existence theorem for efficient lattice rules 
was established in Niederreiter [12]. It was shown that for every dimension 
s > 2 and every integer N > 2 there exists a projection-regular N-point lattice 
rule L of rank 1 with 

(1 1) R, (L) = O(N-1 (log N)s), 

where the implied constant depends only on s. This result is in fact best 
possible since it was proved by Larcher [7] that for any N-point lattice rule L 
of rank 1, R I(L) is at least of the order of magnitude N- (log N)s . 

We now establish an analogous existence theorem for lattice rules of rank 2. 
We recall that for such lattice rules we have two invariants n1 > 1 and n2 > 1 
with n2ln I, and the number N of nodes is given by N = n In2 . For a detailed 
discussion of lattice rules of rank 2, see Lyness and Sloan [10]. We now fix the 
dimension s > 2 and the invariants n, and n2, and we put 

Zi = {z E Z: 0 < z < ni and gcd(z, ni) = 1} for i = 1, 2. 

Let 2 = 2(s; ni, n2) be the family of all s-dimensional lattice rules L of 
rank 2 with prescribed invariants n1 and n2 for which the node set X(L) 
consists exactly of all fractional parts 

k-z ik + k2Z2 with 1I <ki <n, 1 <k2<n2 
n, n2 

as in (1), where z1 and Z2 have the special form 

(12) -1 = (z~l), .., zrs), Z2 = (O Z(2) z(s)) 

with z(h E Z1, 1 < j < s, and zJ) e Z2, 2 < j < s. It follows immediately 
from [19, Theorems 2.1 and 3.3] that every lattice rule L E Y is projection 
regular. For each L E 2 the corresponding lattice in Rs consists exactly of 
all linear combinations with integer coefficients of the vectors 

bi =-Za fori=1,2, bi=ei for3<i<s, 
ni 
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where ei is the unit vector with 1 in the ith coordinate and 0 elsewhere. Let 

M(Sf) = I( 9) RI (L) card(Y) LEY 

be the average value of R1 (L) as L runs through Y. Note that card(S) = 

0(n1)S0(n2)Sl, where q is Euler's totient function. 

Theorem 2. For every dimension s > 2 and any prescribed invariants n1 and 
n2 we have 

M(S) <cS (logN) + log) 

with a constant cs depending only on s. In particular, for every s > 2 and any 
n1 and n2 there exists a projection-regular s-dimensional lattice rule L of rank 
2 with invariants n1 and n2 such that 

RI(L) < c (log N)s + logN) 

Corollary 1. For every s > 2 and any prescribed invariants n1 and n2 there 
exists a projection-regular s-dimensional lattice rule L of rank 2 with invariants 
n1 and n2 such that 

Ra(L) < c(s, a) ((N) + ln) for all a> 1, 

where the constant c(s, a) depends only on s and a. 
Proof. This follows from Theorems 1 and 2. E 

Corollary 2. For every s > 2 and any prescribed invariants n1 and n2 there 
exists a projection-regular s-dimensional lattice rule L of rank 2 with invariants 
n1 and n2 such that the discrepancy of the node set satisfies 

D(L) < c ((logN)s + logN) 

with a constant c, depending only on s . 
Proof. This follows from (6) and Theorem 2. 0 

These results guarantee the existence of efficient lattice rules provided that 
the invariant n1 is sufficiently large, or equivalently, that the invariant n2 is 
sufficiently small (if lattice rules with the same number N = n In2 of nodes are 
compared). This is in accordance with a conclusion that was reached in ?2 by 
different arguments, namely that among lattice rules of rank 2 the most likely 
candidates for efficient lattice rules are those with small second invariant n2. 
In view of (2) and (5), the bounds in Corollaries 1 and 2 yield information on 
the error bounds that can be achieved for suitable lattice rules L E S. 

If we consider the order of magnitude of the bound for R1 (L) in Theorem 2, 
then we observe that the first term N- 1 (log N)s is the same as the best possible 
order of magnitude of R1 (L) for lattice rules of rank 1 (compare with ( 11) and 
the remarks following it). The second term nT' log N is nearly best possible 
since it follows from the remarks after Proposition 2 that R1 (L) is at least 
of the order of magnitude n1 log n2. If nl n2 (i.e., if n1 and n2 are of 
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the same order of magnitude), then the term n 1 log N is in fact best possible, 
since we then have log N = log(n fln2) . log n log n2 . If powers of log N are 
ignored, then the bounds for R,(L), a > 1, and D(L) in Corollaries 1 and 2, 
respectively, are best possible, since R,(L) and D(L) are at least of the order 
of magnitude nj and n-1, respectively, by results in ?2. 

We emphasize that Theorem 2 provides an upper bound for the average value 
of R1 (L) as L runs through the family Y. This means that the bound for 
R1 (L) in Theorem 2 is met by "random" choices of L E Y. This has the 
following practical implication when searching for efficient lattice rules of rank 
2 with prescribed invariants: choose lattice rules L E Y6 "at random," then 
there is a good chance that after a reasonably small number of trials a lattice 
rule can be found for which the bounds in Theorem 2 and Corollaries 1 and 2 
hold. For lattice rules of rank 1 this "randomized" search procedure was already 
suggested by Haber [1]. 

The rest of the paper, which can be found in the Supplement section of this 
issue, is devoted to the proof of Theorem 2. In ?4 we establish some auxiliary 
results that are needed for the proof, and in ?5 we complete the proof. The 
basic ideas of the proof would also work for lattice rules of rank > 2, but the 
details become exceedingly more complicated. 
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